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A plane finite viscoelastic domain with a physically non-linear inclusion of arbitrary form is considered. The problem of finding 
those loads which, acting on the outer boundary of the domain, are such that they produce a specified uniform stress-strain state 
in the inclusion, is solved. Examples, in particular, of the optimal deformation and fracture of the inclusion under creep conditions, 
are considered. © 2002 Elsevier Science Ltd. All rights reserved. 

A plane finite elastic domain with a physically non-linear inclusion of arbitrary form, in which it is 
necessary to produce the required uniform stress-strain state by choosing appropriate external forces, 
was considered earlier in [1]. In this paper the problem is extended to the case of a linear viscoelastic 
domain with a physically non-linear inclusion. An inclusion which weakens during creep is considered 
separately, and inverse problems relating to it concerning the choice of external forces leading to the 
optimal (in the sense indicated below) paths for the deformation of the inclusion and its fracture as a 
consequence of creep are investigated. 

1. THE S T R E S S - S T R A I N  STATE OF A V I S C O E L A S T I C  D O M A I N  
C O N T A I N I N G  A P H Y S I C A L L Y  N O N - L I N E A R  I N C L U S I O N  WITH 

A S P E C I F I E D  S T R E S S - S T R A I N  STATE 

Consider a finite, isotropic viscoelastic domain S of the Ox~xz plane with a physically non-linear inclusion 
S*. The outer and inner boundaries of the domain S are the simple closed contours L and L" (that is, 
L* separates S from S*). 

Extending Hooke's law for the plane problem in [11 to the case of linear viscoelasticity by replacing 
the constants of elasticity by the corresponding operators [2], in the domain S, we will have 

8O~t = ( ~ -  1)O',.8k1 +40°/, k, l = 1, 2 (1.1) 

t~° t=~kt -c3 , ,Sk t l2 ,  / ]=la( l+/( i ) ,  7¢=×(1+/(2) 

where/a and × are constants of elasticity,/~1 and K2 are Volterra operators and the remaining notation 
is the same as that used previously in [1]; summation from 1 to 2 is carried out over repeated subscripts. 
The system of coordinates is chosen so that the point (0, 0) ~ S °. 

We select the constitutive equations for the inclusion S* in the form (1] 

~kl = ~l( t f , , , ) ,  k , l , m , n = l , 2  (a.2) 

where/~kt are non-linear operators of fairly general form. 
We will now formulate the inverse problem, which generalizes the problem considered earlier in [1]: 

on the boundary L, it is required to select those loads which will produce, in the physically non-linear 
inclusion S', the required uniform stress-strain state characterized by the stresses ¢~ = ¢~[t(t) and strains 
ETct = Eft(t) (k, 1 = 1, 2). These stresses and strains are related by Eqs (1.2). At the initial instant of time 
t = 0, the whole of the domain S* u S is in the natural undeformed state. On the boundaryL' ,  the load 
fieldpk and the displacement field uk (k = 1, 2) are continuous. The problem is consider in a geometrically 
linear formulation. 
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Since t~b and e~ are independent of the coordinates x~ and x2, arguments similar to those presented 
earlier in [1] for the stress function U* = U*(z, ~, t) and the complex displacement function 
w* = u] + iu*2 (under the assumption that w*(O, O, t) = O) in the inclusion S* give 

2U* = Az~ + Bz 2 12 + -~2  12 

2A(t) = ~ + o22, 2B(t) = cr2~ - ~ + 2 ~ 2  

(1.3) 

2w* = Cz + D~ 

D(t) = e,l - e22 + 2ie~ 
(1.4) 

(~" is the magnitude of the "rotation" in the domain S*). 
We will denote the function which conformally maps the infinite domain located outside L* onto the 

exterior of the unit circle ~,* of the complex plane ~ by z = co(4) (~ = pei°). Then, by virtue of the continuity 
of  the loads and the displacements on the boundary L*, from (1.3) and (1.4), by analogy with the 
procedure described earlier in [1] involving, in accordance with Volterra's principle [2], the 
replacement of the constants of elasticity ~t and × by the viscoelastic operators ~t and ~ of the form (1.1), 
we shall have, when [ ~[ = 1, for the functions (9(4, t) and ~(~, t) defining the stress-strain state in the 
domain S 

g~(~, t) + 0~(~)~'(~, t) / 0~'(O) + ~(~, t) = A(t)O~(O) + B(t)m((~) 

~q~(~, t) - m(~, t)cp'(C, t ) l  o~'(~) - ~(~, t) = ~t[C(t) o~(a) + D(tko(a)] 
(1.5) 

on ~,*; ~ = e i°. 
The boundary condition for the function (9(4, t) follows from relations (1.5) and, from the boundary 

condition for this function, we obtain the Volterra integral equation of the second kind 

(~, + I)~O(~, t)  = [A(t)+~C(t)lo)(~)+[B(i)+l-lD(t)]-~(~-' ), I ~ I > I (1.6) 

If the function ~0(~, t) has been found, then for ~(4, t), as a consequence of the first boundary condition 
of (1.5), we will have [1] 

~(~, t) = _~(~-t,  t) - ~(~-t )cp'(~, t) / o3'(~) + a( t )~(~  -I ) + B(t)o3(~), I ~ [> I (1.7) 

The function q~(~, t) and ~(4, t) determine the stress-strain state in the domain S and the required 
loads on its outer boundary L. This solution makes sense if the contour ~/of the ~ plane, corresponding 
to the contour L, lies wholly inside the ring 1 < [ 41 < R, in which the functions ~p and ~ are holomorphic 
[i]. 

Note that, in the case of an elliptic physically non-linear inclusion, the solution for the stress-strain 
state in the domain S can be continued beyond the boundary L, including an infinitely distant point. 
In this case, the relations between the stresses O~z and the rotation ~ at infinity and the analogous 
quantities in the domain S* will have the form [I] 

(~ + I)(~,*] + ~'2) 14 + 2igE" = A + m0B + ~t(C + moD) 

(~ + I)((~* 2 - (~ + 2i~2) 12 = -moA - m2o-B + ~(B + moA) - (1.8) 

- ~ t ( D +  2 m  0 Re  C +  m~D); m o = (a - b ) l (a  + b) 

where a and b are the semi-axes of the ellipse. 

2. T H E  U N I Q U E N E S S  OF T H E  S O L U T I O N  OF T H E  P R O B L E M  

It follows from relations (1.6) and (1.7) and the analogous results for the case of an elastic medium S 
[1] that the question of the existence of a solution of the problem considered above reduces to the 
solvability of integral equation (1.6) for the function (9(4, t) (subject to the condition that the above- 
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mentioned contour "t' lies wholly inside the ring 1 < I ~ ] < R on which the right-hand side of Eq. (1.6) 
is a holomorphic function). We will assume that these known conditions for the solvability of the problem 
[3] are satisfied. 

This, for example, holds if the kernel of the operator K2 from (1.1) is bounded and the right-hand 
side of equality (1.6), for any I ~ I > 1, is a summable function of t or if these two functions are summable 
functions with a square. Operators with a weak singularity such as Abelian kernels [2, 3] with an index 
~. in the denominator which satisfies the inequality 0 < ~. < ~ belong to the latter case. The sufficient 
conditions for the unique solvability in the corresponding classes of functions and when ~ ~< ~. < 1 can 
also be indicated: constraints have been presented [3] for which operators of the potential type (and, 
in particular, Abelian operators) will be completely continuous when )~ ~ (0, 1). 

Using the functions q~(~, t) and ~(~, t) found from (1.6) and (1.7), the required loads on the outer 
boundary L of the domain S will be uniquely defined [1]. We will now show that a unique stress-strain 
state in the domain S* td S, which has also been obtained above, will correspond to these loads (subject 
to certain constraints on relations (1.1) and (1.2) which are analogous to those mentioned earlier [1]), 
that is, the physically non-linear inclusion will exist in a uniform stress-strain state. For this purpose, 
we write relations (1.1) in a more compact form by expressing ekt = ekl( t )  in terms of Okt = Okl(t) .  

II 
e,~ ( t )  = a , , , , o , , ,  ( t )  + e , t  ( t )  

t 

F.u,t(t) = [ bktmn ( t  - z ) (~mn( 'c )d '~ ,  k, l = l ,  2 (2.1) 
0 

where aklmn and bklmn are the components of the elastic pliabilities and the creep kernel which possess 
well-known symmetry properties. 

As earlier in [1], we will now specify constitutive equations (1.2), assuming that their right-hand sides 
are the sum of the elastic and inelastic E~ N strains 

* * * * N  
Ekt = a~tmn6mn + £kl , k , l = l ,  2 

The stability conditions for the inelastic strains of the medium S and the inclusion S* 

t t 

/~>~0. /2>~0; / I (t) = ~ A~tAo,tdt, 12(t) m 5 Al~t,t" *lVA~ktdt* 
0 0 

Aokl I,=0 = Ao~t I,=0 = 0, k, l = I, 2 

(2.2) 

(2.3) 

where A is the sign of an increment in the corresponding quantity, will be sufficient for the solution of 
the problem to be unique. 

The first inequality of (2.3) follows from the condition for the work of the stresses in deformations 
of the linear viscoelastic medium to be positive [2]. Note that for this to be satisfied it is sufficient that 
the two quadratic forms are positive definite and, in fact, 

b k t , , , ( x ) ~ k t ~ , ,  . > O. [ck t , , , ( x ) ] '~k t~ , .  . > 0 (~kt~u ~ 0) (2.4) 

or any ~l  (~t  = ~tk, k, l = 1, 2), where Cklmn are the components of the tensor which is the inverse of 
bktm~; the prime denotes differentiation with respect to x. 

Actually, when account is taken of the conditions AOk/ I,=~ = 0, we have 

I I {t) = i 13('r)dz 
0 

where 

! 

13 (t) - xkt ( t)[ bktr~ n (t - x)/cr~, ('c)dT = 
0 

~ o [Cktm~ (t - ~)] Ykt(t. ~)y,~. (t, ~)dx ÷ ~'ckl,~. (O)Yk;(t. t)y,~. (t, t) 
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t 
14 ( t )  = J bklrn n ( t  - Z)JCrn n (X)Xkl ( '~)dx 

0 

Xkl - At~kt ,  yk l ( t ,  "C) E I b k l m n ( t - ~ ) 2 m n ( ~ ) d ~  
0 

and, moreover, it has been assumed that Cktmn(O) exist. 
From this, as a consequence of inequalities (2.4), we have 

t 
tl(t)>~tsft)- f 14(~)d~ 

0 

On changing the order of integration in 15 and integrating by parts, we find that 

I t 
/5(t) = ---S bklmn(t- X)Xkl(X)xmn(x)dz 

2 0 

regardless of the fact as to whether or not there is a (weak) singularity of the kernels bkt,,,(x) when x = 0. 
It therefore follows from inequalities (2.4) that 11( 0 >i O. 

Note that known creep kernels of the form [2] 

e-kX 0 -~. 0 bkt,,n(x) = bklmn (Z. > O) and bklmn(X ) = x b~l,~ n 
0 bkOtrnn = const, bklrnn~kl~m n > 0 when ~kt~tk ¢ 0 

(0<~<1)  

satisfy conditions (2.4). 
The second inequality of (2.3) and the constraints on the constitutive equations of the physically non- 

linear inclusion of the form (2.2), which follow from it, have been previously investigated in [4]. 
The proof of uniqueness is analogous to that which was employed previously [1]. Assuming 

the existence of two solutions which satisfy the same boundary conditions on the contour L 
(which correspond to the functions q)(~, t) and ~(~, t) found in Section 1), and by applying the 
virtual work equations to the differences (which we denote using the symbol A) of the stresses and 
rates of deformation, by virtue of the continuity of the loads and displacements in the contour L*, we 
will have 

j A~ktAt~ktdS+ j A~*~tAcs~ldS = 0 
S S* 

Substituting relations (2.1) and (2.2) into this equality and then integrating with respect to time from 
zero to the actual instant of time t and assuming that Aakt It=0 = 0 in the domain S and Ag~t [~=o = 0 
in the domain S*, we obtain 

• N* * I u(t) + i A~ tA~k td t  as  + I (t) + I Aek! Ac3kt as  = 0 
S 0 / S* 0 

u(t) = ~aktmnAt~kt(t)At3mn(t ), U (t) = -~aktmnAt~kt(t)AOmn(t ) 

(2.5) 

by virtue of the uniqueness of the solution at the corresponding instant of time t = 0 of the elastic or 
elastoplastic problem [1]. By virtue of conditions (2.3), this is only possible when Aakt (t) = 0 in the 
domain S and Ao7,t(t) = 0 in the domain S* for any t > 0. 

Note that, for the proof of uniqueness, the second inequality of (2.3) can be relaxed considerably 
(but, like the first inequality, it is however a consequence of the physically based requirement that the 
work of the stresses in viscoelastic deformations must be positive and, as before, we therefore assume 
that 11 >~ 0): it is sufficient to require that 

t 

12( 0 >! - J ~.o(t)u (t)dt 
0 
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where ~.0(t) is a certain continuous positive function. Actually, from relation (2.5) when account is taken 
of the first inequality of (2.3), we have 

! 

V(t) <~ ~ ~.o(x)V('Odx, V(t)~ ~ t)(t)dS 
0 S ° 

from where, as a result of the well-known Gronwall inequality [5], V(t) = 0, that is, Aa~t(t) = 0 in the 
domain S °. It then follows from relation (2.5) that A6kt(t ) = 0 in the domain S. 

3. THE O P T I M A L  D E F O R M A T I O N  AND F R A C T U R E  OF 
A P H Y S I C A L L Y  N O N - L I N E A R  I N C L U S I O N  

U N D E R  C R E E P  C O N D I T I O N S  

We will consider the case when the creep deformations e~,~ are the inelastic deformations of the inclusion 
and the constitutive equations for S" have the form (2.2) when E~ N - e~, where [6] 

- - m  * 

rlkt* --" ekt" .c = Bis"(l -I'~) OslOO~t, 

~ = B2sP(1-f2)  - "  

k , l = l ,  2 
(3.1) 

where s = s(o*kt) is a homogeneous first-order convex positive function, f2(0 ~< C2 ~< 1) is a damage 
parameter (in the natural undeformed state f2 = 0 and at the instant of fracture ~ = 1) and B1, B2, m, 
n, p are positive constants. 

Relations (3.1) can be inverted by expressing o~t and ~2 in terms of n~t and f2 [6]: 

CJkt=sOHli)l]kt, k , / = l ,  2; ~ = B o H a ( 1 - ~ )  p 

s=[BtIH(I- l ) )m] )/", Bo = B2B~ a, t~= pln,  13=m(oc-l) 
(3.2) 

where H = H(rl~t) is a homogeneous first-degree convex positive function such that Hs = ~lba'~. 
Relations (3.1) (or (3.2)) describe the processes of isothermal deformation under conditions of creep 

and fracture of materials which weaken in a brittle or viscous manner• 
We will now formulate some inverse problems for a viscoelastic medium S with an inclusion S*, the 

defining equations for which have the form (1.1), (2.2) and (3.1). 

Problem 1 (on the optimal deformation of an inclusion)• On the outer boundary L of the domain S, 
those loads Pk, acting over a time interval [0, to], have to be selected for which the creep deformations 

* C  • " *C " " e~t In the domain S" at the instant of time t = to will have the reqmred values e~.., which are mdependent 
of the coordinates of the points of the domain S*, for the smallest magnitude of the greatest damage 
~'~max = max s • ~ in S °. Here, the duration to of the external force and the permissible stresses are 
bounded: 0 < to ~< t.. and max s* s ~< s.. when 0 ~< t ~< to (t,. and s.. are specified quantities). 

Problem 2 (on the optimal fracture of an inclusion). With the same constraints imposed on to and s, 
loads Pk on the boundary L are chosen such that the whole domain S* is fractured after a time to ~< t.. 
(that is, in order that f2(xl,xz, to) = 1 for all points (xl,xz) ~ S*) with a minimum level of energy dissipated 
by creep 

t o  

AC =- S ~ rl*~tt~dtdS 
S* 0 

In both problems, it is assumed that, when t < 0, the whole of the domain S u S* exists in the 
undeformed state and, hence, ~ = 0 and E~,~ = 0 (k, 1 = 1, 2) when t = 0 everywhere in S'. 

As previously [6], it is assumed that the above-mentioned constraints are compatible, that is, the 
corresponding paths for homogeneous deformation exist under the conditions for creep of the 
domain S*. 

We will now briefly consider each of the problems separately, using results which have been obtained 
previously [6]. 
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Problem 1. We must distinguish three cases [6], depending on the magnitude of ot from (3.2). 
1. ct > 1. Among all paths leading to the specified strains e~t~,,, the optimal path (in the sense of the 

accumulation of the least damage) is the path with constant rates of creep strains over the whole possible 
* Eka,,/t,,. The  corresponding stresses Okl are determined time interval [0, t,.], that is, when to = t.. and llk t = ,c • 

from the first relation of (3.2) 

, OH** 
= s ~- -~-- - -  Okt *k~,* ' H** = H(F"ktc'*) 

. ~llnF , ~ C L  -I ml[n(l:-~)] 1 
L B ' t * * )  L 

(O~t<~t**) (3.3) 

Hence, in this case, the uniform stress-strain state when 0 <~ t <<- t,,,  defined by formulae (2.3) and 
(3.1)-(3.3), will be the optimal stress-strain state in S*. 

*C 
• c =  e k t . , f ( t )  2. o~ = 1..Any simple strain (for the strains e~) is an optimal strain, that is: when ekt 

(f(0) = 0, f ( t )  > 0) in any interval [0, to] (to ~< t**) subject to the condition that Smax (t) ~ s** 
(0 ~ t ~ to). The stresses (~t are easily found from the first relation of (3.2). 

3. (x < 1. In this case (~j(t) = const when 0 ~< t ~< t o and s = s,,, that is, there is a simple strain. From 
relations (3.1) and (3.2), we find 

OH** I - ( I -  B~lB2st,'~"H**)m+ I 
c ~ t  = s , .  ~ to --  *c " B 2 ( m  + 1)s,P, ~Ekl** 

which is possible if to ~< t,,. 
Hence, in each of the three cases, the corresponding uniform stress-strain state, which is specified 

by the formulae presented above, must be realized in the domain S'. The problem therefore reduces 
to that considered in Section 1, that is, using the known magnitudes of A, B, C and D, the functions 
q)(~, t) and ~g(~, t), which define the stress-strain state in S, and the required loads Pk on L, are found 
from relations (1,6) and (1.7). 

Problem 2. Here, it is also necessary to distinguish three cases, which now depend on the magnitude 
o f Y o - p / ( n  + 1) [61. 

1. Yo > 1. It has been shown in [6] that the strain for which s(t) = s** (0 < t <~ to), where the time t o 
until fracture is determined from relation (3.1): to 1 = B2(m + 1)s~, is the optimal strain (in the sense of 
energy expenditure) for the fracture of an element of the medium existing in a uniform stress-strain state. 

2. $o = 1. In this case, the specific energy expended in fracture A,  ~ = B1B; l, that is, it is independent 
of the strain path. 

3. Y0 < 1. The strain with a constant specific dissipation power W -= rl~ta~t = W0 over the course of 
the maximum possible time, that is, in the interval [0, t ], is the optimal strain. In this case [6] 

W o = B;[Bz(m+ I -Yom)t**] -I /r°  

For the optimal fracture of the physically non-linear inclusion in each of the three cases, it is therefore 
sufficient to create the corresponding uniform (non-unique) stress-strain state in the domain S" which 
satisfies relations (2.2), (3.1) and (3.2), and the above-mentioned equalities for to and s or W. The required 
functions will be determined from relations (1.6) and (1.7). 

We will now formulate a further two problems of optimal fracture which are distinguished from the 
earlier problems in that the creep strains e~j~,, at the instant when fracture of the inclusion occurs are 
specified. 

Problems 3a and 3b. With the appropriate choice of loads Pk on the boundary L,  it is required to 
produce in the domain S ° the uniform (solely time-dependent) stress-strain state for which fracture 
occurs for the specified strains ~;,l~,,: (a) with the shortest value of to of the duration of the process and 
(b) with the least energy dissipation accompanying creep A c. 

The initial conditions are the same as those in Problems 1 and 2. 
It is obvious that the problem reduces to finding the optimal strain paths under creep conditions for 

*C an element of the medium (for a point) in the case of specified strains ekl** at the instant of fracture 
with the minimum time or energy expenditures. Note that these problems were not studied in [6]. 
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Before proceeding to consider these problems, we will make some remarks. We consider the set of 
all strains (or loading) paths of an element of the medium which, at the instant of fracture, leads to 
the specified strains eT, t%. Instead of the variable t, we shall consider the quantity f2 (0 ~< f2 ~< 1) which, 
by virtue of relations (3.1) or (3.2), is an increasing function of t, that is, we assume that cr~t = t~t (f2) 
and e~ = e~(f2) and that e~(O)= 0 and e~(1) = E~,, for any path. 

Changing in relations (3.1) and (3.2) to differentiation with respect to f2 and taking account of the 
homogeneity of the function H = H(~t)  and the equality 

we obtain 

d 
d _ ~ s_p(  ! _ f ~ ) , ,  d [n(n~)]-~(1-~)-a  dt  

d~  B 2 dt 

• c" = B~s.-e  8s .c" B~s"-P - ~  (3.4) . , H(Ek/ ) =  = [H(rl~t)]l-a(I-f~) -13 
E kl B2 Ot~ k! B 2 

where the prime denotes differentiation with respect to f2. 
The time t, until fracture occurs is found from relations (3.1) and (3.2) and is a functional of 

s = o r .  

I I • 
t ,  = -;--I {sierra(n)] 1-"0 - n )man  

° 2 0  (3.5) 
I ~ . 

In view of the convexity and homogeneity of the function H = H(~l), the equality [6] 

/ 

r.(l) *c r..(2) *c' holds and, from this equality, on putting ~kt = ekt and ~ t  = e~,  we find 

• C" *C • H(ekt ) >~ [H(e~t )] 

where the equality sign only holds for simple strain paths. From this, taking account of relations (3.4), 
we obtain 

I I 
*C *C" 

H , ,  =- n ( e ~ t . . )  = f *~ " [ H(E~t )] d ~  ~ ~ H(e,t )dO = 
o o 

' (3 .6 )  
_ I. ~ [H(~'kt)]~-~dQ~, I - Q j  =(1-f~)  ~-a ( l - I~>0)  

Bo(I-13)0 

The condition 13 < 1 in (3.6) follows from (3.2) under the assumption that, in the case of strain at a 
constant rate, that is, when H = const, the time t. until fracture occurs and, consequently, also the strains 
at the instant of time t = t, are finite. 

We will now consider each of Problems 3a and 3b separately. 

Problem 3a. When c~ > 1, the path with constant strain rates, that is, when q'kto = Ekt¢../to, where the 
time to until fracture occurs is defined as follows: 

to = [B0( 1 _ 13)H~. ]J/(a-I) (3.7) 

is optimal among all the paths from the above-mentioned set and, when t~ < 1, among the simple paths 
belonging to the same set. 

Actually, the equality sign will hold in the case of the (simple) path indicated in (3.6), that is 

} no~-%taa = t-t**, no =- H(n;,~o ) 
BoO-13) 
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Then, for any other path rl~t = rl~t (f~), we obtain from relations (3.5) and (3.6) 

Hence, we find 

I I 
I JH-adf~,, J(Hl-a-H~-C~)df~l>~O, H=H(TI~,t) 

t" = ~o(~-f~)o o 

[ I I - c t  a / (c t  I) 
t, - t  o = -I"---'--S!Bo0 [(H ) - -(n~-Ct)a/ta-I)]dfll ~> 16 

I 
/6 _= I ct HOI~ (HI_ a_H/_ct)df~l 

B00-13)  co-  1 0 

(3.8) 

(3.9) 

where account has been taken of the fact that H 0 = const and we have used the obvious inequality for the function 
f i  (x ) = x ~/C ~-t ) 

A (x) - A (Xo ~ >1 A'(Xo )(x - x o) 

since 

f l"fx) = Ct(O~ - l ) - 2 x  ( 2 - ° 0 / ( ~ t - l )  > 0 

w h e n x > 0 ,  c t > 0 ,  ct~ 1. 
It is clear from relations (3.8) and (3.9) that 16 >/0 when cx > 1 for any path and 16 = 0 for any simple path 

when ct ~ 1, which also proves the assertion formulated above. Relation (3.7) for the optimal time to follows from 
(3.8) when H = H 0 = H../t o. 

Note  that, under  the above-ment ioned strain conditions when H = const, the stresses at the instant 
of  fracture are equal to zero, that is, a~t]~= 1 = 0 (k, l = 1, 2) which follows from the first relation of 

* * C  (3.2). Hence ,  according to relation (2.2), we have ek~la__~ = ~kt**, that  is, the total deformat ions  at this 
t ime are identical to the creep deformations• 

In the case when ~x = 1, f rom the second relation of (3.2), we have ~2 = BoH(rl~,l). The  equality 

I. 

I H(~'kl )dt = Bo' 
o 

holds for  any path, and, hence, when ~ t  = e~,~,./t0, we obtain H . ,  = Bo 1, that is, a solution exists if the 
specified deformations e*kt~,, satisfy the condit ion H(e*kt~.,) = B~ 1. It is clear that, when the last condit ion 
is satisfied, the path with the largest possible (from physical considerations) value of  H(rl~) is the optimal 
path. For  example,  if there  is a constraint  on s : s(t) <- s . .  (as in Problems 1 and 2), then, according to 
relations (3.2), Hm~, = Bls*~*(1 - ~2) -~ and the t ime up to fracture t, = [Bz(m + 1)sT.] -1. 

Problem 3b When  n + 1 - p  > 0, the path  for the case of  constant  stresses o~t = a~t- is the optimal • . I , /  

path (at least among all the simple paths). These  stresses are de te rmined  from relations (3.2) and (3.4) 

* * C  

Okto = soOH**/0ekt**, So =(B(IB2 H**)lt(n-r) 

To prove this assertion, we note that it follows from relations (3.4) and (3.6) that 

H., ~< I H(ek~")df~= " J s"-Pd~' Ac =B-~L s"-P+'d~ (3.10) 
0 B20 as o ( 

the equality sign in inequality (3.10) only holds in the case of simple paths). 
From inequality (3.1), by analogy with relations (3.8) and (3.9), we find (the zero subscript refers to quantities 

corresponding to the stresses g~ = (~:1o) 

J '~t~n-P - °On-P)d~ >I 0, A c - A~ = [(sn-P) q -(sg-P)qld~"1~ ~- 17 
0 B2 o 

~._ I n - p + l  (3.11) 
17 =- qso~ (s " - p - s ~ - p ) d f 2 ,  q = ~  

°2 0 n - p 
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The last inequality in (3.11) is satisfied by virtue of the fact that the second derivative of the functionfz(x) = x q 
is positive when n - p  + 1 > 0,x > 0, n ;~ p. 

It follows from the last inequality in (3.11) that A c ~>.4~ when n -p  + 1 > 0 for simple paths (17 = 0); if, however, 
n - p  > 0, thenA ~ t> A~ for any path (17 ~ 0). 

As in Problem 3a, the case whenp = n (that is, when a = 1) requires separate consideration. A solution 
will exist i fH . ,  = B~ 1 = B1B~ a. According to the second relation of (3.10), w h en p  = n, the path with 
the least (physically) possible magnitude ofs = s(o*~t ), which, for example, is equal to the non-zero creep 
limit (if it exists) below which there is practically no creep, is the optimal path. 

If there is a constraint on the time to until fracture occurs: t o ~< t,. (as in Problem 2), then, as has 
been shown in [6] (the case when Y0 = n(n + 1) -1 < 1 in the problem of optimal fracture), strain with 
a constant dissipation power Wwhen t o = t.. will be the optimal strain. 

Note that, when p = n, Problem 3b corresponds to the problem considered earlier in [6] when 
"/0 < 1 although, in the latter problem, it was not required that 

I ,  
* *C 

S H(rlkt)dt = H** -- H(e,t**) 
0 

(this equality only follows from (3.2) when ct = 1, that is, when Y0 = n(n + 1)-1). 
When n + 1 - p  < 0, the specific energy expended in the fracture is independent of the strain path 

and is a characteristic of the material [6]. 
Suppose n + 1 - p  < 0. In this case, the functionf:(x) = x q has a negative second derivative and, in 

the second inequality of (3.1 1), the sign will change to a positive sign, that is, the path considered above 
when s = so = const is the most disadvantageous path (at least among all the simple paths) in the sense 
of the energy expenditure. 

The constraint from below At  i> 0 is natural in the case of the optimal path (when n + 1 - p  < 0) 
and the attainment of the lower boundaryA~/> 0 is theoretically possible (in the limit). As an example, 
we consider the two sets of simple paths which depend on the parameters ~ > 0 

*C *C Ekt = 8kt**F,(f~), i = I, 2 (3.12) 

F I = ~ ,  F 2 = 1 - ( 1 - f 2 ) ~  

In both cases, we find from relations (3.4) and (3.10) 

( B ~)l(n-p) ~q 

a c = ~ - ~ l  J Hq*F(~), F(~) = (~_ l)q+ i 

It can be seen that the function F "- F(~) has a maximum when ~ = 1 (which, according to relations 
(3.4) and (3.12), corresponds to the above-mentioned case when s = const) and F(~) ---r 0 when ~ ~ 0 
and ~ ~ oo. It is obvious that these limiting situations lose their physical meaning since, as a consequence 
of relations (3.12), they lead to the instantaneous strain from H = 0 when g2 = 0 to H = H, .  when 
0 < f2 ~< 1 or from H = 0 when 0 ~< g2 < 1 to H = H. .  when f2 = 1. It is therefore only possible to 
consider fairly small (or large) values of ~ for which the stresses and the time until fracture occurs will 
be finite quantities which must also hold in any actual process. 

An analysis of relations (3.12) using equalities (3.1) and (3.4) shows that these constraints will 
be satisfied if ct -1 < ~ < 1 for Fl(~) and cCl(1 - 13) < ~ < 1 for F2(~), where et = p/n > 1 + n q,  

= m ( a  - 1) > m/n and [3 < 1 (which has been mentioned above). It can be seen from this that 
the lower boundary for ~ in the case of F1 lies more to the right than in the case of/72. Hence, 
F2 = F2(~) can be chosen as the function which characterizes a strain path close to the optimal path 
and which takes account of constraints of a physical nature if the value of ~ is close to cCl(l - 13). The 
corresponding stresses and the time until fracture occurs are easily found from relations (3.2), (3.4) 
and (3.5). 

4. E X A M P L E S  

Consider an infinite viscoelastic domain (plane) S containing an elliptic physically non-linear inclusion, 
the constitutive equations for which have the form (2.2) and (3.1). By analogy with (2.1), we solve 
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relations (1.1) for S with respect to the strains, assuming for simplicity that the creep kernels acting on 
the spherical and deviator parts of the planar stress tensor only differ by constant factors 

~ - i  . ! o ( 4 . 1 )  
e.kt =---~g a,~Okt +-2-ffg~kt, k , / = l , 2  

Here, 

~ - I  × - I  I I 
~ x =  Jr(x), = - x = - J 2 ( x )  

ft ~ ~t ~t 
l 

Jk(x)  =- x(t)+[Skj g ( t -x )x (x )dx . ,  [Sj: =const, 
o 

k = i , 2  

Then, according to relations (1.8) and (4.1), for a specified uniform stress-strain state in the domain 
S*, the stresses and rotation at infinity will be determined from the system of equations 

× + l  Xk(t)_~o K0_x)Xk(x)dx =@~, k = l ,  2 (4.2) 
P 

4 2 

@l = C+ m o D + l  (A + too-B) 
~t 

= -( 'D + m~ D + ~ m° -- O2 2m o Re C) + --z( B + moA ) - --:- ( A + moB ) x ~  I I 

P 

60 = ~ ( × -  I)+2P2 
×+1  

It is well known [2, 3] that the solution of Eqs (4.2) has the form 

Xk(t)= g-'-g--'-'[@'(t)+13°i×+lL o F([3° ' t - ' t )Ok(x)dx']  ' k =  i, 2 (4.3) 

where F(150, t -  x) is the resolvent of the kernel K(t - x) from (4.2). For example, in the case of the Abelian 
kernel which is very common in the theory of linear viscoelastic media, the thoroughly studied Rabotnov 
fractional-exponential function [2] is the resolvent. 

Since an ellipse with semi-axes a and b serves as the boundary L*, the transformation function has 
the form [1] 

to(k) = Ro(~ + mob-I), 2Ro = a + b, 2moR 0 = a - b 

In the case of a uniform stress-strain state in the domain S*, the points of the contour L*, which 
correspond to the values z = z0 - t0(o) (o = ei°), transfer, after deformation, to a new position, which 
is determined by the relation z = z@ + w*(zo, 20) whence, as a consequence of relations (4.1), we obtain 

z = ( l + C I 2 ) t o ( o ) + ( D l 2 ) t o ( o ) =  R~ e ial (O r + rn;O~ -t) 

6 ~ = e  'at, 0 , = 0 + ( ~ - ~ 0 2 ) / 2 ,  c t ,=( tpl+qoz)/2  

R;e '~'' = Ro[ l+(C+moD)12] ,  miRle '~'2 = Ro[mo +(moC+ D)12 ] 

(4.4) 

Hence, the contour L* will be deformed into a new ellipse with semi-axes R 1(1 + m x) and R1(1 - m  l) 
(these quantities are positive in view of the smallness of the strains e~t and the rotation e*). Its axes of 
symmetry are rotated relative to the old axes by an angle cq. Consequently, by a choice of the functions 
C(t) and D(t)  from (1.4), it is possible to deform the initial boundary L* into the required ellipse (which, 
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na tu ra l ly ,  is c lose  in s h a p e  to  t he  in i t ia l  e l l i p se )  wi th  the  p a r a m e t e r s  Ra(t) ,  m l ( t )  a n d  cq( t )  (0 <~ t ~< t , ,  
t .  is the  ins t an t  o f  f r ac tu re ) .  

Suppose, for example, that, when t = t,, the initial contour L ' :  z = R0(tr + m0 ~-1) (0 < m 0 "~ 1) must be converted 
into a circle of radius RI. Then,  from relation (4.4), on putting t21 = 0, we obtain for C. and D,  (magnitudes at 
the instant of time t = t, are denoted  by an asterisk) 

C. +m0D, = 2(RIR~Ie '~l" - I )  
(4.5) 

moC. + D, = -2m 0 

Suppose the rotation e: = 0 (or el2- = 0). Then (since mo is a real constant),  it follows from (4.5) and (1.4) that 
e;2. = 0 (or, correspondingly, e: = 0), q01. = 0 and 

* RIRoI-(1 +(--I)k÷lm0) k = l . 2  (4.6) 
Ekk, = i _ ( _ l ) k + l m 0  ' 

If, on the other  hand, an initial circular contour L ' :  z = Rocr is converted into the ellipse z = Rl(cr + ruler-l), 
then, from relations (4.4) when tpl = qo 2 = m0 = 0, we find 

, • • + ( _ l ) ~ + l m l ) R I  e l 2 . = e . = 0 ,  ekk .= ( I  ROI-1,  k = l , 2  (4.7) 

If the path with the constant rates of creep strains (as, for example, in Problem 3a) is the optimal path, then, 
on taking account of the fact ment ioned above that, under such conditions, the total strains and the creep strains 
are identical at the instant when fracture occurs, we find that the equalities rl~/, = e'~t,/to are satisfied for the path 
in questions, where the magnitude of to is given by expression (3.7). The corresl~onding stresses ~ t  are found from 
relation (3.2) and the required stresses cr~ are found from (4.3). 

In the two examples considered,  the strains e'er are given by relations (4.6) and (4.7),during which o]z" = 0, 
that is, rl]20 = 0. It follows from this (at least, in the case of an isotropic medium) that t~]2 = 0 and, therefore, that 
e~2 = 0 at any instant of time t E [0, to]. Then, the magnitudes of the rotations in the domain S" and at infinity 
will be equal, since the condition for the imaginary parts in the first equation of (4.2) to be equal has the form 

( o  I , ' ~  E" =E*+moLEI2---~Ol2 ) 

Hence e ~ = 0, if it is assumed that e" = 0 for any t ~ [0, to]. 

Th i s  r e s e a r c h  was s u p p o r t e d  f inanc ia l ly  by  the Russ i an  F o u n d a t i o n  fo r  Bas ic  R e s e a r c h  (99-01-00551).  
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